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Spherical harmonic representation of a wave produced
by a source on the spherical wavefront
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Abstract. Representations of a wavefunction were determined in terms of spherical harmonics. The source
is considered as a spherical surface expanding with the velocity of light. The expressions determined are
correct near the wavefront. The description of the electromagnetic field using the obtained solution is
discussed.

PACS. 41.20.Jb Electromagnetic wave propagation; radiowave propagation

We constructed the transient solution of the initial value
problem for the inhomogeneous wave equation in terms of
spherical harmonics for sources distributed on a spherical
surface expanding with the velocity of light.

The wavefunction representation was determined in
terms of the spherical harmonics (in terms of the modes
of the spherical coordinate system) of the source on the
circle associated with the sphere and for a point source
on this circle. These results are preserted in addition to
the work [1], where the expansion of waves produced by
such sources in terms of modes of a cylindrical coordinate
system was considered. We compare these two alterna-
tive descriptions for the arbitrary space-time dependence
of the source and for the source on the circle. Note that
both expansions are correct near the wavefront. The solu-
tion of the wave equation is constructed with the help of
the general expressions obtained in [2] and [3], where the
Smirnov method of incomplete separation of variables [4]
and the Riemann formula were used.

The practical interest to the present work is connected
with the theoretical and experimental investigations of
electromagnetic fields produced under absorption of hard
radiation by a medium [5,6] and stimulated by the prob-
lem of directional wave formation [1].

We construct the solution of the inhomogeneous wave
equation

(
∂2

∂τ2
−∇2

)
ψ =

1
cr
j , ψ ≡ 0 τ < 0. (1)
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Expressing the wavefunction ψ and the source function j
as

ψ(r, ϑ, ϕ, τ) =
∞∑

n,m=0

ψnm(r, τ)Pm
n (cosϑ)

(
cosmϕ
sinmϕ

)
,

(2)

j(r, ϑ, ϕ, τ) =
∞∑

n,m=0

jnm(r, τ)Pm
n (cosϑ)

(
cosmϕ
sinmϕ

)
, (3)

where

ψnm(r, τ) =
(
ψcos

nm(r, τ)
ψsin

nm(r, τ)

)
, jnm(r, τ) =

(
jcosnm(r, τ)
jsinnm(r, τ)

)
,

Pm
n (cosϑ) is the associated Legendre function and r, ϑ,
ϕ are the spherical coordinates. The angular variables are
separated and we arrive at the functions vnm connected
with the coefficients ψnm as vnm = rψnm to the following
problem (

∂2

τ2
− ∂2

r2
+
n(n+ 1)

r2

)
vnm =

1
cr
jnm,

vnm = jnm = 0, τ < 0, vnm|r=0+ = 0. (4)

The boundary condition is discussed below. The functions
vnm can be expressed using the Riemann formula (see [2])

vnm =
1
2c

∫∫
D

dτ ′ dr′ Pn (cosΘ1(r′, τ ′)) jnm(r′, τ ′), (5)

where cosΘ′
1(r

′, τ ′) = r2+r′2−(τ−τ ′)2

2rr′ , Pn(cosΘ1) are the
Legendre polynomials. The integration domain D on the
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Fig. 1. The triangular integration domain on the r′, τ ′ plane
in the case τ − r > 0.

plane r′, τ ′ is confined by the lines τ ′−r′ = τ−r, τ ′+r′ =
τ + r, and the axis τ ′ = 0 for τ < r or τ ′ − r′ = τ − r,
τ ′ + r′ = τ + r, τ ′ + r′ = τ − r and the axis τ ′ = 0 for
τ > r (see Fig. 1)

Hence we write the wavefunction representation in
terms of spherical harmonics

ψ(r, τ) =
1
2c

∞∑
m=0

(
cosmϕ
sinmϕ

) ∞∑
n=m

Pm
n (cosϑ)

×
∫ τ

0

dτ ′
∫ −τ ′+r+τ

τ ′+r−τ

dr′ Pn (cosΘ′
1(r, τ)) gnm(r′, τ ′), (6)

where the function gnm is equal to jnm/r and the time
observation and sphere observation satisfy the inequality
τ > r.

Let us compare the above representation with the
wavefunction expansion in terms of the modes of the cylin-
drical coordinates system (Fourier series in azimuth-angle
variable), obtained in [1]

ψ =
∞∑

m=0

ψm(ρ, z, τ)
(

cosmϕ
sinmϕ

)
, (7)

where

ψm(ρ, z, τ) =
1
2c

∫ τ

0

dτ ′
∫ −τ ′+z+τ

τ ′+z−τ

dz′

×
∫ ∞

0

dssJm(sρ)J0

(
s
√

(τ − τ ′)2−(z − z′)2
)
gm(s, z′, τ ′).

(8)

One can see, that the coefficients of the two repre-
sentations (6) and (7) are connected by ψm(ρ, z, τ) =∑∞

n=m ψnm(r, τ)Pm
n (cosϑ).

Let the source be distributed on the sphere expanding
with the velocity of light. We assume that the starting
point of source does not coincide with the origin of the
spherical coordinate system and write the source function
in the form

j(τ, r, ϑ, ϕ) =
1

2πr2
δ(τ − r + r0−)F (τ, r, ϑ, ϕ) . (9)

Fig. 2. The integration domain on the ξ′1, ξ
′
2 plane in the case

ξ1 > 0.

Here F (τ, r, ϑ, ϕ) is a space-time dependent function, δ(x)
is the Dirac distribution and r0 is a positive constant. Re-
membering the initial condition vnm|r=0+ = 0, one can see
that the above expression may be incorrect under initial
condition when r0 = 0 (see [1] for details). We calculate
the coefficients jnm

jnm(r′, τ ′) =
1

2πr2
δ(τ − r + r0−)Fnm(τ, r),

where Fnm(r, τ) are coefficients of the series, analogous
to (3). Substituting the above expression into (5) and us-
ing the variables ξ′1,2 = τ ′∓r′ and ξ1,2 = τ∓r, convenient
for integration (see Fig. 2), we arrive for the expansion co-
efficients vnm

vnm =
1
πc

∫∫
D̃

dξ′1 dξ′2 Φ(ξ′1, ξ
′
2)δ(ξ

′
1 + r0−) ,

where Φ(ξ′1, ξ
′
2) = 1

(ξ′
1−ξ′

2)2Fnm

(
1
2 (ξ′ − ξ′1);

1
2 (ξ′1 + ξ′2)

)
Pn (cosΘ1(ξ′1, ξ′2)), cosΘ1(ξ′1, ξ′2) = 1 − 2 (ξ1−ξ′

1)(ξ2−ξ′
2)

(ξ′
2−ξ′

1)(ξ2−ξ1) .

The integration domain D̃ is confined by the lines ξ′1 = ξ1,
ξ′2 = ξ2, ξ′2 = ξ1 and ξ′1 = −ξ′2 for the case ξ1 > 0 and in-
clude the segment of the line ξ′1 = r0− (see Fig. 2). Finally
we obtain the expressions for the coefficients ψ<

nm = 1
r v

<
nm

and ψ>
nm = 1

r v
>
nm in the space–time domains ξ1 < r0 and

ξ1 > r0 correspondingly

ψ<
nm =

2
πc

∫ ξ2

r0

dξ′2
Φ(−r0, ξ′2)
ξ′2 + r0

,

ψ>
nm =

2
πc

∫ ξ2

ξ1

dξ′2
Φ(−r0, ξ′2)
ξ′2 + r0

·

The above result and expressions (2) describe the wave-
function representation in terms of spherical harmonics
for the source on the expanding sphere.

The solution of problem (1) in the space-time repre-
sentation for the source distribution on the circle, formed
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as an intersection of the conical surface ϑ = ϑ0 with the
expanding sphere was determined. The circle has the ra-
dius r0 cosϑ0 at the initial time. The source function can
then be expressed as

j(r, ϑ, ϕ, τ) =
1

2πr2
δ(τ − r + r0)

× δ(cosϑ− cosϑ0)f(ϕ, r, τ) , (10)

and the coefficients of expansion (3) become

jnm =
(n+ 1/2)(n−m)!

2πr2(n+m)!
× δ(τ − r + r0)Pm

n (cosϑ0)fm(r, τ). (11)

Using the above formula and the property of the δ-
function we obtain the coefficients of expansion (2)
from (6)

ψnm =
(n+ 1/2)(n−m)!

4πc(n+m)!
Pm

n (cosϑ0)

×
∫ T2

T1

dτ ′
1

(τ ′ + r0)3
Pn (cosΘ1(τ ′ + r0, τ)) fm(τ ′+r0, τ ′),

(12)

where T1 =
{

τ−r−r0
2 , τ − r > r0

0 , τ − r < r0
, T2 = τ+r−r0

2 . The

usage of the variables r, τ is convenient for comparison
of the wavefunction ψ = 1

r v with the representation in
terms of the modes of the cylindrical coordinate system,
obtained in [1]

ψm(ρ, z, τ) =
1

4π2cρβ2
⊥

×
T ′
2∫

max[0,T ′
1]

dτ ′
1

(τ ′ + r0)2
cosmθ(τ ′)
sin θ(τ ′)

fm(β‖(τ ′ + r0), τ ′).

(13)

Here β‖ = cosϑ0, β⊥ = sinϑ0, the angle θ is defined by

cosθ = ρ2+z2−(τ+r0)
2+2(τ−β‖z+r0)(τ ′+r0)

2β⊥ρ(τ ′+r0)
and the limits of

integration are T ′
1,2 = τ2−z2−ρ2−r2

0+2(β‖z∓β⊥ρ)r0

2(τ+r0±β⊥ρ−β‖z) . Expan-
sions (7, 12) and (2, 13) describe two representations of the
wavefunction for the source distributed on the expanding
circle.

In the particular case of the point source moving along
the expanding circle with arbitrary angular velocity the
function f(ϕ, r, τ) in (10) is replaced by δ(ϕ−φ(τ))f(r, τ).
In this case, the expansion coefficients of source function
are written as(
jcos
nm

jsin
nm

)
=

(n+ 1/2)(n−m)!
πr2(n+m)!

δ(τ − r + r0)

× Pm
n (cosϑ0)

(
cosmφ(τ)
sinmφ(τ)

)
fm(r, τ) .

One can easily transform expression (12), where fm(τ ′ +

r0, τ
′) is replaced by

(
cosmφ(τ ′)
sinmφ(τ ′)

)
fm(τ ′ + r0, τ

′). Turn-

ing to the variables ξ′1,2 = τ ′ ∓ r′ and ξ1,2 = τ ∓ r one
gets

ψ =
1

2πc

∫ ξ2

r0

dξ′2
1

(ξ′2 + r0)3
fm

(
ξ′2 + r0

2
,
ξ′2 − r0

2

)

×
∞∑

n=0

(n+
1
2
)Pn (cosΘ1(−r0, ξ′2))

×
[
Pn(cosϑ0)Pn(cosϑ) + 2

n∑
m=1

(n−m)!
(n+m)!

Pm
n (cosϑ0)

×Pm
n (cosϑ) cosm

(
ϕ− φ

(
ξ′2 + r0

2

))]
. (14)

The addition theorem [7] (8.814), and the substitution

∞∑
n=0

(
n+

1
2

)
Pn (cosΘ1(−r0, ξ′2))Pn(cosΘ2(ξ′2))

= δ (cosΘ2(ξ′2) − cosΘ1(−r0, ξ′2)) ,
yield the following representation of the wavefunction

ψ =
1

2πc

∫ ξ2

r0

dξ′2
1

(ξ′2 + r0)3
fm

(
ξ′2 + r0

2
,
ξ′2 − r0

2

)
× δ (cosΘ2(ξ′2) − cosΘ1(−r0, ξ′2)) , (15)

where

cosΘ′
2 = cosϑ0 cosϑ+sinϑ0 sinϑ cos

(
ϕ− φ

(
ξ′2 + r0

2

))
.

In order to obtain the wavefunction ψ in an explicit form,
correct near the wavefront, we have to solve the equation
cosΘ2(ξ′2) − cosΘ1(−r0, ξ′2), where r0 �= 0.

In the simple case when the point source moves along
the straight line deflected from the axis z by the angle ϑ0,
the function φ(τ) = ϕ0 and the integration in expression
(15) can be performed

ψ =
h

(
τ2 − r2 − r20 + 2rr0 cosΘ

)
2πc ((τ + r0)2 − r2)

× fm

(
(τ + r0)2 − r2

2(τ + r0 − r cosΘ)
,

(τ + r0)2 − r2

2(τ + r0 − r cosΘ)
− r0

)
,

(16)

Here

cosΘ = cosϑ0 cosϑ+ sinϑ0 sinϑ cos(ϕ− ϕ0),

h(x) is the Heaviside function defined by the argu-
ment of the δ-function. The above result agrees with
expression (26) obtained in [1] in terms of the modes of
the cylindrical coordinate system.

The solution determined for the scalar problem
allows us to get the components of electromagnetic field
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vectors of TM type. The calculation of the magnetic field
components reduces to differentiation with respect to the
angular variables

Dr =
∂2u

∂r2
− ∂2u

∂τ2
, Dϑ =

1
r

∂2u

∂ϑ∂r
, Dϕ =

1
r sinϑ

∂2u

∂ϕ∂r
,

Hr = 0 , Hϑ =
c

sinϑ
∂ψ

∂ϕ
, Hϕ = −c∂ψ

∂ϑ
, (17)

where ψ = 1
r

∂u
∂τ = v

r . It should be noted that the bound-
ary condition v|r=0+ = 0 leads to the conditions for the
magnetic field rHϕ|r=0+ = 0, rHϑ|r=0+ = 0.

The component of the magnetic field vector Hϕ may
be calculated using (16) and (17) as follows

Hϕ =
rr0(β‖ sinϑ− β⊥ cosϑ cos(ϕ− ϕ0))

2πr1(r2 − (r0 − r1)2
δ(τ − r1))

× fm

(
r21 − r2

2(τ − r cosΘ)
,

r21 − r2

2(τ − r cosΘ)
− r0

)

+
1

2π((τ + r0)2 − r2)
h(τ − r1)

× ∂

∂ϑ
fm

(
τ2 − r2

2(τ − r cosΘ)
,

τ2 − r2

2(τ − r cosΘ)
− r0

)
,

(18)

where r1 =
√
r2 + r20 − 2rr0 cosΘ. Assuming that the

source moves from the origin of the coordinate system
(r0 = 0)

j(r, τ) =
δ(τ − r)

2πr
δ(ϑ− ϑ0)δ(ϕ − ϕ0)f(r, τ),

we get from (15), where r0 = 0, φ = ϕ0, the expression
for the wavefunction

ψ =
1

2πc(τ2 − r2)
f

(
τ2 − r2

2(τ − r cosΘ)
,

τ2 − r2

2(τ − r cosΘ)

)
.

(19)

Using the above formula and expressions (17), one can see
that the magnetic field vector component Hϕ is described
by the second term of expression (18) only. Therefore the
parameter r0 is necessary to generate the wavefunction
representation correctly near the wavefront. Note that the
above result is correct in the space-time domain τ − r > 0
and on the wavefront if the condition f |τ=0 = 0 is true.
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